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Logicoalgebraic Foundations of Contact Mechanics 
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The logicoalgebraic foundations of the Lagrangian and Hamiltonian techniques 
of  contact mechanics are exhibited, by starting axiomatically with a classical 
system whose logic is a Boolean tr algebra. 

1. INTRODUCTION 

This paper exhibits the logicoalgebraic foundations of the Lagrangian 
and Hamiltonian techniques of  contact mechanics. 

A line of  thought related in spirit to the foundational methods  of 
quantum logic (Varadarajan, 1968 and 1970) is followed. 

This line pursues a systematic transition from the physical formula- 
t ion--expressed in terms of observables and states associated with a Boolean 
or algebra (Barone and Grassini, 1983)--to the geometrical sett ing-- 
expressed in terms of  contact structures (Abraham and Marsden, 1978)--of 
classical mechanics. 

Logic of  a classical deterministic system with finite degrees of freedom 
is briefly recalled in Section 2; there we are led from a representation 
theorem to single out, as a privileged representation space, the space o f  pure 
states associated with the logic. 

Kinematics of a system with time-dependent holonomic constraints is 
then developed in Section 3; there we show how the pure state space can 
be endowed with a classical vector bundle structure, tangent to the fibers 
of a configuration space-time, as soon as the geometrical description of 
pure states is committed to suitable kinematical observables (position, veloc- 
ity, and absolute time). 

Dynamics of  a nonconservative system is finally studied in Section 4; 
there we can transfer Lagrangian and Hamiltonian contact techniques onto 
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pure state space and recover a logicoalgebraic characterization of all second- 
order motion equations on configuration space-time, in terms of suitable 
dynamical observables (kinetic energy and force field). 

2. LOGIC 

Let ~ be a Boolean tr algebra. 
will be thought of as the logic of a classical physical system, whose 

states and observables are then defined as probability measures on ~ and 
o" morphisms from the Borel structure of  real line R onto ~,  respectively 
(Varadarajan, 1968). 

will be then assumed to be separable and atomic. Separability indeed 
corresponds to finiteness of degrees of freedom, i.e., to existence of finite 
complete systems of  observables; atomicity then corresponds to determinism, 
i.e., to existence of the set ~ of pure states, which take strict values to 
observables and can be as well characterized as deterministic measures--  
with 0 and 1 values only--concentrated at atoms of ~ (Kronfli, 1970; 
Barone and Galdi, 1979). 

Owing to separability, there exists a o- epimorphism 

u: ~ (S) -~  5r 

from,the Borel structure of  any standard Borel space S (with the power of 
the continuum), onto ~.  

Owing to atomicity, subspace 

P = { x ~  S/u({x}) # 0}c  S 

is a representation space of ~,  i.e., a separable Borel space whose Borel 
structure is related to ~ by a o- isomorphism (Barone and Orassini, 1983) 

6: ~(P)--> ~ 

Any other representation space P',  ~b' is Borel isomorphic with P, qk 
In fact, if 

O: P-~ ~ 

(resp: 0') is the bijection induced by ~b (resp. ~b') upon identification of 
atoms with pure states of  ~,  composition 

~b '-1 o 6: P--> P '  

acts on Borel sets according to rr isomorphism 

4 ' - '  ~ 4: ~(P)- '> ~ ( P ' )  

and therefore is a Borel isomorphism. 
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Consequently a unique separable Borel structure, o- isomorphic with 
Le, will be defined on ~ by requiring 0 . (or  ~0') to be a Borel isomorphism. 

Then, if  we call classical logic a separable and atomic Boolean cr algebra, 
we can state the following: 

Lemma.  Let 2e be a classical logic. Then there exists a un ique - -up  to 
Borel i somorph i sms i represen ta t ion  space of ~ :  it is the space ~ of pure 
states of  ~.  

3. KINEMATICS 

Let 3~ be a classical logic. 
Kinematics is the study of preferred systems of observables, giving a 

geometrical description of  pure states of  ~ (Barone and Grassini, 1983). 
To this end we consider the set of  all complete systems of observables 

of  an odd order 2n + l, each of them being regarded as ac r  epimorphism 
u with standard space S = R 2n X R. 

Then we define an action of the group of diffeomorphisms of R" on 
the above set, through transformation law 

u ' =  u o (Tk x l n )  -I 

T being the tangent functor, k a diffeomorphism of R n, and 1 R the identity 
map on R. 

Finally we call kinematics on Lr an orbit K of this action, and position, 
velocity, and absolute time observables, respectively, the ones collected by 
any ordered system u c K, for their strict values, i.e., the coordinates of  the 
points of  representation space P c R 2n X R change, after a transformation 
k of  observables, according to the classical law Tk • 1R. 

Constraints are then invariant conditions characterizing P as a subset 
of  R 2" x R. 

Holonomic constraints are precisely expressed by 

P = Ker(T,f)  

where f :  R" x R ~ R s is a differentiable mapping whose kernel is the Car- 
tesian product  of  a submanifold M c  R" by t ime axis R, and T , f  is the 
restriction of T f  to unit timelike vectors tangent to R" x R. 

Holonomy condition corresponds to t ime-dependent constraint 
equations on position coordinates, which single out a product manifold 
M x R c R" x R ; equations inferred from the previous ones by time deriva- 
tion then identify P with the bundle of  all unit timelike vectors tangent to 
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M x R or, through a natural isomorphism, the bundle, tangent to the fibers 
of M •  on R, 

P = T M •  

Let K be a holonomic kinematics. 
For any u c K, bijection 0 defines a differentiable fibration zr on ~, 

related to natural fibration rM of T M  by a commutative diagram 

r 
T M x R  ) 

~MXIR 

M x R  , Q x R  
Ax1 R 

To require ~ to be a vector bundle isomorphism makes zr a vector 
bundle structure on ~, isomorphic with TQ x R through the commutative 
diagram 

~o(TA-I XIR) 
T Q x R  ) 

Q x R  

For any other u'~ K, transformation law u' = u o (Tk x 1R) -I, which 
leaves holonomy condition invariant, entails 

and 

with ( = klM , and then 

0 ' = 4 , o ( T U  l x l R )  

h ' = h o ~  -I 

q/o (TA '-t X1R)= r176 (TA -~ X1R) 

Consequently bijection 0 '  still defines the same differentiable fibration 
~v on ~, which, as a vector bundle, turns out to be canonically isomorphic 
with TQ x R--Cartes ian product of phase space TQ, tangent to configuration 
space Q, by time axis R. 

Then, if we call standard logic a classical logic endowed with a 
holonomic kinematics, we can state the following: 

Theorem. Let 3? be a standard logic. Then the space ~ of pure states 
of LP is a vector bundle 

r ~ Q x R  

tangent to the fibers of configuration space-time Q x R. 
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4. DYNAMICS 

Let ~ be a standard logic. 
Dynamics is the study of  dynamical sprays of ~f, defined as vector fields 

X on pure state space ~ which are second-order equations on configuration 
space-time Q x R, i.e., 

T ~ - o X = I ~  

= T Q  x R being regarded as the subbundle of  unit timelike vectors of  
T(Q x R ) - - t h e  integral curves of  X (at points with zero time) are just the 
derivatives of  their 7r projections and these projected or base integral curves 
are motions, i.e., sections of  Q x R. 

Contact  methods first arise in the study of inertial sprays defined as 
follows. 

Assume Ae to admit a hyperregular observable T. 
If  T is identified with the Borel function 

T: ~ R  

whose range is the set of  all its strict values, then hyperregularity requires 
T to be a differentiable function on vector bundle ~ whose fiber derivative 

LT: ~-~  ~ *  

is a (fiber-preserving) diffeomorphism onto dual bundle ~ * =  T * 0  x R. 
Hyperregularity allows Legendre transformation L T  to pull natural 

contact form o3 of ~ *  back to ~, there defining a contact form 

~or = LT*(oS) 

Then consider the observable E r  of Ae characterized by strict values 

E r ( p ) = L T ( p )  . p - T ( p )  ( p 6 ~ )  

and the vector field X r  on ~ uniquely determined by Hamilton's  equations 

ixrwr = -ixT(dET ^ dt), ixr dt = 1 

(i denotes the interior product,  ^ the exterior product, d the differentiation, 
and t: T Q  • R ~ R the second projection). 

XT is an inertial spray. 
The base integral curves of XT are just the inertial motions defined by 

Hamilton's  variational principle with Lagrangian or kinetic energy T 
(Abraham and Marsden, 1978). 

Consequently, turning to the study of an arbitrary dynamical spray X, 
we stress the difference X - X r  which causes forced motions. 

The second order of  sprays entails 

TTr o (X - X r )  = 0 
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and then (as can be checked in local coordinates) 

ix_xrwr=LTo F, ix_xvdt=O 

where, in particular, 1-form iX-X~WT on 59, which verticality of X -  Xr 
reduces to a fiber bundle morphism from 59 to 59", has been expressed, 
through Legendre transformation, in terms of a vector-valued observable 

F: 59 --~ 59 

(fiber bundle endomorphism of 59) called--as in elementary point 
dynamics--a force field. 

So, owing to the definition of XT, X turns out to be the vector field 
on 59 uniquely determined by Lagrange's equations 

ixr = -ixv(dErA dt)+LTo F, ixdt= 1 

Then, if we call Lagrangian system a standard logic endowed with a 
hyperregular observable, we can state the following: 

Theorem. Let ~ be a Lagrangian system. Then any dynamical spray 
X of 5f is determined, through Lagrange's equations, by hyperregular 
observable T of Ss (the kinetic energy) and a unique vector-valued 
observable F on Ze (the force field). 
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